
Alma Elsewhere: Using
APIs to Sprinkle Data

Around Your Organization
Chad Kluck, Web Developer

St. Thomas Libraries, User and Digital Services
ELUNA: May 3, 2019

clkluck@stthomas.edu
github.com/USTLibraries
github.com/chadkluck

Presentation audio w/ slides: https://chadkluck.net/eluna-2019

Welcome

What’s Your
Experience?
• How many have used

an API?
• How many have created

an Ex Libris API key for
integration with another
system?

• How many have at least
looked at the API
documentation?

• By the end of today
you’ll have done, or be
able to do, all three.

St. Eligius/St. Elsewhere Hospital, Boston, MA
Photo by mmelody from https://mapio.net/pic/p-25305660/

ALMA ELSEWHERE

Agenda

• Get Familiar: What is an API?
• Ex Libris API Console: The Tour
• Postman: The Ease of Playing with APIs
• Security: (aka Officer Buzz Kill)
• A Framework & Other Goodies from GitHub

Get Familiar: What is an API?

What is an API?

• Application Program Interface
• To put it simply: it’s data that one application can request from

another
• One application makes a REQUEST to a server
• Then the server gives back a RESPONSE

Your
PHP/JavaScript

Application/Script

Request

[“Better not tell you now”] ?

Enhance User Services

• You no longer need to rely on
vendors to deliver a custom user
interface or widget

• RSS feeds are still strong, but
limited

• Bring the data to your patrons:
• Student Portals
• Course Management Systems
• Chat and Virtual Assistants

• Streamline processes:
• Invoices
• Bulk Bib Edits

I read, therefore I code!

Can you read this and visualize what it does?

<h1>Hello World!</h1>
<p>This is my page!</p>
<img src=“images/underconstruction.gif” alt=”A highly
animated and annoying GIF”>
<p>About me</p>

How many, the first time you saw HTML, said: “WTH? Maybe, if I
stare at it long enough, just maybe I can make out what it is”?

Data Response Example (JSON)

["hello world"]

It is a single text string:

hello world

In fact, try it now in any browser by going to:
https://api.chadkluck.net/eluna

Data Response Example #2 (JSON)

What is this?

["banana", "apples", "oranges"]

It’s a list:

Item 1: “banana”

Item 2: “apples”

Item 3: “oranges”

Or, if you think in arrays:

[0]: “banana”

[1]: “apples”

[2]: “oranges”

JSON: JavaScript Object Notation (but it can be used with PHP, Python, ASP…)

BAO

Data Response Example #2 (JSON)

What is this?
["banana", "apples", "oranges"]

BAO

A quick note: Examples and links from a slide:
https://api.chadkluck.net/eluna?code={{3LetterCode}}

The 3 letter code is shown here

https://api.chadkluck.net/eluna?code=

Data Response Example #3 (JSON)

What about this?
[{

"name": "Charlie Brown",

"id": "1005783",

"fines": 38.93

},

{

"name": "Linus van Pelt",

"id": "1004378",

"fines": 0,

"loans": [{"title": "Bible (KJV)",

"due": "20181226"}]

}]

It’s a multi-level array!

[0][name]: "Charlie Brown"

[0][id]: "1005783"

[0][fines]: 38.93

[1][name]: "Linus van Pelt"

[1][id]: "1004378"

[1][fines]: 0

[1][loans][0][title]: "Bible (KJV)"

[1][loans][0][due]: "Dec 26, 2018"

LVPhttps://api.chadkluck.net/eluna?code=

Wait, so you REQUEST a RESPONSE through a
URL?
• Yep! No database connections
• It’s the same as you would a web page, by using a URL
• Just as https://example.com/mypage might get you:

<html><head><title>Hello World!</title></head>
<body><h1>Hello World</h1></body></html>

• Requesting https://api.chadkluck.net/eluna?code=8BL will
get you:
["Concentrate and ask again"]
(or some other random answer!)

8BLhttps://api.chadkluck.net/eluna?code=

It separates your UI from the Data
• Your application (8Ball) doesn’t have to worry about random

answers

• You just create an interface either Web (HTML), native app
(iPhone/Android), or virtual assistant skill (ChatBot, Alexa, Siri, etc)

Your
PHP/JavaScript

Application/Script

Request

["Signs point to yes"] ?

Okay, but what can I do with it?

Linus van Pelt

Your Loans
Bible (KJV) is due Dec 26
Public Speaking is due Dec 26

[{

"name": "Linus van Pelt",

"id": "1004378",

"fines": 0,

"loans": [{"title": "Bible (KJV)",

"due": "20181226"},

{"title": "Public Speaking",

"due": "20181226"}]

}]

<div>Linus van Pelt<div>

<h2>Your Loans</h2>

Bible (KJV) is due Dec 26

Public Speaking is due Dec 26

LVP

Real Life Example:
University Portal
(One St. Thomas)
• When students and staff

log in they see their
library activity

• Loaned items
• Hold requests
• Fees and fines

https://one.stthomas.edu

https://one.stthomas.edu/

Chad, it must have taken you weeks to code that!

• Um, no. I didn’t code that (though I could have!)

• I just went to our IT people and said: “I have this great idea for the
new portal!”

• They said, “Yeah? What?”

• I said, “What if we let users know when their book request was
available, see what they had checked out and if they had any fines!”

• They bowed down to me and exclaimed, “That’s a brilliant idea!”

• I don’t even know, or care, what language they used

• I simply copied a sample API GET request

But, I did need to interpret the data!

[{

"name": "Charlie Brown",

"id": "1005783",

"fines": 38.93

},

{

"name": "Linus van Pelt",

"id": "1004378",

"fines": 0,

"loans": [{"title": "Bible (KJV)",

"due": "20181226"}]

}]

• I told them in what fields to find
the user data

• I told them what fields from the
book request to display

• And I gave them the API
request URL

• How did I know all this? I got it
from the…

Ex Libris API Console: The Tour

Documentation

• You need to know what fields
are available and how to make
requests
• Ex Libris has extensive

documentation on the
Developers site

For example, Users: https://developers.exlibrisgroup.com/alma/apis/users

https://developers.exlibrisgroup.com/alma/apis/users

Get started

• Create your account

• Generate an API key

• Play

“Students in Computer Lab 1988”

Photo from University of St. Thomas Libraries Archives

http://cdm16120.contentdm.oclc.org/cdm/ref/collection/arch-photo/id/796

Set yourself up (if you have authorization)

• Who holds the keys? Take them out for coffee
• Get yourself an account
• Go to the Ex Libris Developer’s Network

• https://developers.exlibrisgroup.com

• Go to Build: My APIs

DEV

https://developers.exlibrisgroup.com/

Generate a key

• Recommend one for each
application

• Use meaningful names
• …that way you have an

idea of what’s “out there”
• …and you can revoke

access if you need to
• For example, when we go

from development to
production

• To generate a key click on
Add API Key

Adding an Application
• Give it a meaningful name.

Add things like:
• What library service area

uses it
• What application it is for
• Whether it is in

Production or
Development

• You can disable keys you use
for development when not in
use!

Next Step:
Permissions

• Add an API “Area”
• You don’t typically need a

whole bunch of “Areas”
• For example our portal

only needed “Users” as
loans and fines are
included

• What environment should
data come from?

• Does it have Read-Only or
Read/write access?

Play & Learn with the API Console

Choose your server and API key

Choose your request type and “Try it out”

Enter Parameters and Execute

View the response body

Look at the response headers
How many requests do you have left?

Eureka!

• You’ve got data!
• But now what?

Grab the Request URL
• As stated earlier, an API (GET) request is basically just a URL
• This formulates your URL with all the parameters and even the API key
• Note that if you want JSON data you either send that fact in the request

header, or you add &format=json to your URL

XML or JSON
• Default format returned is

XML, but you can switch it
to JSON

Model view
• Empty fields may not

display in the response, so
how do you know what
fields are available?

• Model View!

Reports
• Ex Libris likes to report on how many API requests they process
• But how many are yours? And for what?
• Well, find out!

Be a good steward of resources

Usage Graphs!

Download any report to CSV

Daily usage by Area

Usage by half-hour!

Even daily usage by key

• This is where
giving your keys
useful names help!

• And giving each
application it’s own
key!

• Find the API hogs
and rogue scripts!

Postman: The Ease of Playing with
APIs

Get Postman
• A browser, but for APIs
• Download from site https://www.getpostman.com and install
• Create a new GET request for https://api.chadkluck.net/eluna

• Hit “Send”

Beautiful, isn’t it?

https://www.getpostman.com/
https://api.chadkluck.net/eluna

Add a query parameter (key + value pair)

1. Add “code” as a key and enter “CPE” for the value

2. Hit “Send”

You’ll notice that the parameters are added to the query string in real-time.
You can paste in a full URL with query string and it will parse out the
parameters for you.

Would you like to play a game?

• Go ahead and try changing the
value for “code” and submit:

• BAO
• LVP
• CBL
• 8BL

https://api.chadkluck.net/eluna?code=CPE

Careful when playing around!

• Doing a GET: You’re safe
• DELETE, POST, PUT? Know what you’re doing!
• This is where provisioning the keys is important

Let’s try another request

• Remember our university portal example?
• Loans
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/loans?
user_id_type=all_unique&limit=10&offset=0&order_by=due_date&format=json&direction=ASC
&apikey={{apikey}}

• Holds/Requests
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/requests?
request_type=HOLD&user_id_type=all_unique&limit=10&offset=0&status=active&format=json
&apikey={{apikey}}

• Fines
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/fees?
user_id_type=all_unique&status=ACTIVE&format=json&apikey={{apikey}}

• Replace {{user_id}} and {{apikey}} with your own
• Or don’t, because…

LHF

Environment variables!

• You can add frequently used values for testing, such as mm_id,
user_id, etc.

• Access them by placing the variable name in between {{ }}
• https://api.chadkluck.net/eluna?code={{code}}

Environment Variables: Manage/Add

Use {{variable}} for the value

• Switch between environments to change the value of the variable
• Multiple test users, loan ids, book ids, etc

Environment Variables: Switch Between Values

Environment Variables: View Current Values

Postman is fully featured and free!

• Save multiple environment variable sets
• Organize your requests in folders
• Create a free account and access your work from the cloud across

multiple machines
• Are my keys safe? Check out https://www.getpostman.com/security

• “AES-256-GCM encrypted at the application layer before storage”

• Oh, and one more thing…

https://www.getpostman.com/security

Code snipits!

Python!

PHP!

cURL!

JavaScript!

NO!

JavaScript!

NO!
You must never, ever use JavaScript with
Ex Libris APIs! Promise me, for all that is
good in this world, do not USE JavaScript
for this! JavaScript is fine, but NOT for
accessing APIs Client-Side with keys.

Only use JavaScript on public APIs or
with Oauth or Server-Side!

But.
Not.

For.
This!

Security: (aka Officer Buzz Kill)

JavaScript?

There are exceptions, right?

NO! …or
Maybe?

Security Checklist
• Are we exposing

sensitive data in the API
request?

• Personal information
• Secrets like an API key or

access tokens
• Does it have the potential

to return any of the
above?

• If you answer “yes” to
any of these then you
need to implement the
request server-side

• All Ex Libris APIs will
have an answer of “Yes”

• Why? API Key

“Computer Dance 1965”
St. Thomas freshmen were matched to dates based on answers to a questionnaire

Photo from University of St. Thomas Libraries Archives
http://cdm16120.contentdm.oclc.org/cdm/ref/collection/arch-photo/id/903

Applying the Security Checklist: Example #1

• Let’s look at that last example again:
• https://api.chadkluck.net/eluna?code=CPE

• Does the request:
• Contain any personal info?
• Contain secrets like an API key?
• Return any of the above?

No, No, and No! APPROVED!

Applying the Security Checklist: Example #2

• Loans
https://api-blahblah.com/almaws/v1/users/1004378/loans?
user_id_type=all_unique&limit=10&offset=0&order_by=
due_date&apikey=trfKkutTj3ljsXfZyEHB4D

• Does the request:
• Contain any personal info?
• Contain secrets like an API key?
• Return any of the above?

YES, Yes, and YES!

DENIED!

REDACTED!

Applying the Security Checklist: Example #3

• Bibs
https://api-blahblah.com/almaws/v1/bibs/235487

• Does the request:
• Contain any personal info?
• Contain secrets like an API key?
• Return any of the above?

No, No, and ___

Applying the Security Checklist: Example #3

• Bibs
https://api-blahblah.com/almaws/v1/bibs/235487

• Does the request:
• Contain any personal info?
• Contain secrets like an API key?
• Return any of the above?

No, No, and YES!

DENIED!

REDACTED!

/loans

API Best Practices

• Never reveal secrets
• Never place secrets in the client’s hands (JavaScript in browser,

URLs, POST requests, compiled code in a mobile app)
• Definitely never hard code them!
• Two words: View Source

• Anything in the client’s hands is able to be reversed engineered
• A hard lesson to learn, many app devs still do it and it comes back to bite

them!

• Revealing a key to someone makes them look at it and think, “Huh, I
wonder what else this opens.”

The problem with the Ex Libris API

• It’s not really a problem
• The limitations it imposes actually increases its flexibility and

usefulness
• It is API key based and therefore meant to be used server to server
• It is a key that opens many doors, even ones you don’t consider
• An API key, even one provisioned for just BIBs, allows someone to

poke around
• It is up to you to develop a (secure) public interface

When to use client-side API calls

• Public feeds (blogs, event calendars, new book lists)
• At St. Thomas Libraries we use JavaScript API calls for a lot of public

content
• However we typically TRANSFORM the data before passing it on to the

client-side
• We host a variety of intermediary scripts (written in PHP)
• We also restrict which websites can request the data through the embedded

scripts
• If the requestor for the data is not from a *.stthomas.edu webpage or a pre-

approved domain, we don’t honor the API request.

Creating an intermediary

https://www.stthomas.edu/libraries <script>
var display = function (apiRequest) {

/* some code that makes the request
and then formats it in HTML for
display on page */

}
// call the display func with API url
display(“https://lib-

api.stthomas.edu/courses?list=all”);
</script>

Displaying a list of courses we have in Course Reserves is pretty safe, right?
But we can’t just put GET /almaws/v1/courses?apikey=xxxx out there in JavaScript

We’ll host an intermediary script on our application
server
• https://libraries-api.stthomas.edu/courses?list=all
• /courses/index.php is a server-side script that holds the API key

and only returns pre-defined (non-sensitive) data fields suitable for
public consumption.

• The server-side script also checks to make sure the request was made
from a St. Thomas website (don’t confuse this with IP Address
checking!)

• Why check for a *.stthomas.edu address? So that our server doesn’t respond
to blanket requests that didn’t originate from a web page hosted by us.

• Responding to illegitimate requests (even for public information) uses
bandwidth and server processing time.

The Intermediary

https://www.stthomas.edu/libraries

https://libraries-api.stthomas.edu/courses

?list=all

// API Script Pseudo Code

$params = getParams();
$url = “/ almaws/ v1/ courses?$params&apikey=$apikey”;
callExLibrisAPI(url);
generateResponse();

It has tunnel vision, it doesn’t know about the other API requests that are possible. Doesn’t even
think about poking around the other APIs it has access to. It is a very trustworthy staff member.

The “backend” call

https://www.stthomas.edu/libraries

https://libraries-api.stthomas.edu/courses

/almaws/v1/courses?apikey=xxxx

courses{…} Alma
API

St. Thomas
Intermediary

API

The intermediary passes back “clean” data

https://www.stthomas.edu/libraries

https://libraries-api.stthomas.edu/courses

// API Script Pseudo Code

$params = getParams();
$url = “/ almaws/ v1/ courses?$params&apikey=$apikey”;
callExLibrisAPI(url);
generateResponse();

[{"title": "Geology 101",

"code": "GEOG101"},

{"title": "Biology 203",

"code": "BIOL203"}

]

Reading Lists in our campus LMS (Canvas)

• We use the Alma API to
display Reading Lists for a
given course in Canvas

• This page uses an API service
we developed for Library Help

• The API is accessible by any of
our campus applications

• Imagine not only having the
Reading List in Canvas, but
also on a personalized library
page for each student in our
campus portal

Remember how I said the UI is separate from
Data?
• The logic involved in searching for and displaying Alma reading

lists is very complex, a ruleset of about a dozen IF statements
• Plus there are “don’t show before” and “Don’t show after” dates for

many sections and items
• Instead of coding this search and display logic for each application

(University portal, Canvas, campus mobile app) we code the logic
once and serve it up as an API

• Therefore our App/UI only needs to know the course and the
Intermediary API takes care of the logic behind the search, data, and
formatting!

St. Thomas
Intermediary
Course List

API
Alma

PHP (or Python or anything) hosted
on a Web Server (LAMP stack) or
serverless environment

User Interfaces

canvas.stthomas.edu

libraries-api.stthomas.edu

one.stthomas.edu

Mobile app api-na.hosted.exlibrisgroup.com

Wow. That’s a lot of coding. Sigh.

• “Chad, you made me sit through this presentation thinking I would
walk away with something I could actually use.”

• Yes, but I have some good news…

A Framework
& Other Goodies from GitHub

But you’ll need a place to host your code

• If you can’t have your own IT group provision a server, there are

other options (as long as you are allowed to host your code

elsewhere)

• Web Hosting Service w/ a LAMP stack (Linux, Apache, MySQL, PHP/Py/Perl)

• Amazon Web Services (AWS) Lambda

• Microsoft Azure Functions

• Google Functions

• Read more on this blog post by Asaf Yigal: AWS Lambda vs. Azure

Functions vs. Google Functions

• https://logz.io/blog/serverless-guide

Load Times

• Be careful! API requests take time and can delay loading of a web
page

• That’s why we use JavaScript where possible
• Page loads and when API calls are done the JavaScript updates the page

GitHub

• There’s a lot out there
• But these will get you coding for now:

• github.com/USTLibraries
• github.com/chadkluck

GIT

Framework

• Here’s something to get you started:
• https://github.com/ustlibraries/exlibris-api-example

• Based on a framework developed to quickly deploy APIs and
microsites:
• https://github.com/chadkluck/php-project-framework

• All you need to do is:
• Set up a few lines in the custom config file (CORS request)
• And plop your code into the generateResponse() function consisting of:

• An API request to Ex Libris
• Running through/looping through the data
• Generating an array of data suitable to return

https://github.com/ustlibraries/exlibris-api-example
https://github.com/chadkluck/php-project-framework

JavaScript Template

• Already has code to make API calls
• Place your code in the execute() function
• You’re ready to roll
• https://github.com/chadkluck/js-template

• Example: 8 Ball
• https://diversion.chadkluck.net/8ball
• https://github.com/chadkluck/8ball-api (the api service)
• https://github.com/chadkluck/8ball-js (the JavaScript client/UI)

https://github.com/chadkluck/js-template
https://diversion.chadkluck.net/8ball
https://github.com/chadkluck/8ball-api
https://github.com/chadkluck/8ball-js

A final piece of code

The code for api.chadkluck.net/eluna:
• https://github.com/ustlibraries/eluna-2019

https://github.com/ustlibraries/eluna-2019

What next?

• Even if you can’t set up a server environment, get familiar and play
• Play with Postman, Ex Libris API Console, your own APIs
• Understand what is available, and what you can do

• Start small, remember I just handed 3 API requests over to our university
developers

• By this time next year: Proposition for a place to host your APIs
• I gave you everything you need to get started

Thank You!
Questions?

clkluck@stthomas.edu
github.com/USTlibraries
github.com/chadkluck

Video of Presentation Slides with Audio

• I recorded the presentation slides along with:
https://chadkluck.net/eluna-2019

• This ELUNA presentation was based on/extends the presentation I gave at
UMWUG (Upper Midwest User Group) Fall:
https://chadkluck.net/umwug-2018

• More on the Library Help LTI: “Drag, Drop, Done, Implementing Library
Help LTI” presentation given at LibTech 2019:
https://chadkluck.net/libtech-2019

https://chadkluck.net/eluna-2019
https://chadkluck.net/umwug-2018
https://chadkluck.net/libtech-2019

BONUS MATERIAL

PHP – Return an array as JSON

// --

// PHP - Return an array as JSON

$data = array();

$data[] = "Hello World"; // put data in the array

$cache = 60; //in seconds

$origin = "https://www.yoursitedomain.com"; // CORS allowed

origin

$ts = gmdate("D, d M Y H:i:s", time() + $cache) . " GMT";

header("Expires: ".$ts);

header("Pragma: cache");

header("Cache-Control: max-age=".$cache);

header("Access-Control-Allow-Origin: ".$origin); // CORS

header("Content-type: application/json");

echo json_encode($array);

PHP – Request JSON and turn into array

// --
// PHP - Request json data and turn into array

function getDataFromJSON($url) {
$results = array();
try {

$contents = @file_get_contents($url); // @ means suppress warnings
$results = json_decode($contents, true);

} catch (Exception $e) {
echo "Caught exception: ". $e->getMessage();

}
return $results;

}

$apikey = ""; // enter an API key here - needs access to Courses
$url = "https://api-
na.hosted.exlibrisgroup.com/almaws/v1/courses?limit=10&offset=0&order_by=code%2Cse
ction&direction=ASC&format=json&apikey=".$apikey; // change this to whatever you
want, be sure the key has access
$data = getDataFromJSON($url);

Loans, Fines, Fees

User Loans, Requests, and Fines for university
portal – Part 1
• First, determine if the user has any loans, fines and requests.
• Remember we want to be good stewards of API requests. Why make

3 calls if we can just make 1 and determine the user doesn’t have
anything to display?

• Of course, at most we’ll make 4 calls, but chances are we won’t.
• Call #1: Get User Info:

GET https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/
{{user_id}}?user_id_type=all_unique&view=full
&expand=loans,fees,requests&apikey={{apikey}}&format=json

User Loans, Requests, and Fines for university
portal – Part 2
• In the response you’ll find something like this:

"requests": {
"value": 0,
"link": "https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/1065237/requests"

},
"loans": {

"value": 3,
"link": "https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/1065237/loans"

},
"fees": {

"value": 0,
"link": "https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/1065237/fees"

},

• This user only has loans, so we end up making 2 requests instead of 3

User Loans, Requests, and Fines for university
portal – Part 3

• Loans
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/loans?
user_id_type=all_unique&limit=10&offset=0&order_by=due_date&format=json&direction=ASC
&apikey={{apikey}}

• Holds/Requests
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/requests?
request_type=HOLD&user_id_type=all_unique&limit=10&offset=0&status=active&format=json
&apikey={{apikey}}

• Fines
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/fees?
user_id_type=all_unique&status=ACTIVE&format=json&apikey={{apikey}}

Search for, and request an item

Bonus API Calls: Step 1
• Try these out in Postman, but here’s a sequence to get you on your way to a

book request service (well, once the user is authenticated—there is that)
• Each of the following leads to the next
• First a user performs a search query:
https://api-
na.hosted.exlibrisgroup.com/primo/v1/pnxs?q={{query}}
&lang=eng&offset=1&limit=10&view=full&vid=STTHOMAS&sc
ope=stthomas&apikey={{apikey}}

BNS

Bonus API Calls: Step 2

• When a user selects an item we get the BIB:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/?view=full
&expand=p_avail,e_avail,d_avail&nz_mms_id={{nz_mms_id}}
&format={{format}}&apikey={{apikey}}

• Holding Link:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/
{{mms_id}}/holdings?format={{format}}&apikey={{apikey}}

• Get PID:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/
{{mms_id}}/holdings/{{holding_id}}/items/?
format={{format}}&apikey={{apikey}}

BNS

https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/?view=full

Bonus API Calls: Step 3

• We make the request for the user:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/
{{mms_id}}/holdings/{{holding_id}}/items/{{item_pid}}/requests?
user_id={{user_id}}&format={{format}}&apikey={{apikey}}

BNS

Import invoices into finance system

Import invoices into finance system

• This spring we partnered with our university budget and finance
group to automate the import of invoices from Alma into our
university finance system.

• Easy, right?

The 3 APIs for finance

Get Fund Codes:
/almaws/v1/acq/funds?apikey={{apikey}}&view=full&limit=100&offset=0

Get Active Invoices:
/almaws/v1/acq/invoices/?apikey={{apikey}}&base_status=ACTIVE
&limit=100&view=full&offset=0

Get Each Vendor (based on invoices):
/almaws/v1/acq/vendors/{{vendorCode}}?apikey={{apikey}}

Piece of cake! Right?

University
Finance System

Vendors
Invoices
Funds

A
PI

Invoices

Line
Items

Fund
Codes

University
Finance System

Vendors
Invoices
Funds

Import the
data

Vendors

Temp
Tables

API

API

API

A
PI

AP
I API

Middleware!
A collection of
scripts and
scheduled jobs

In reality…

Because…

funds

fund_code

fund_external_id

…

invoices

invoice_id

alma_vendor_code

price

info…

invoice_line

invoice_id

line_id

fund_code

…

invoice_line

invoice_id

line_id

fund_code

…

vendors

alma_vendor_code

financial_sys_code

…

University
vendors

University
funds

University
invoices

Import invoices into finance system

• You need to find the common IDs/Codes that make your Alma data
link to your University IDs. Such as Fund Codes and Vendor Codes.

• …And you may need to use tables or mapped arrays to make things
relational (temporarily at least) as you churn the data.

• Depending on how your university likes to ingest data, your mileage
will vary. Everyone has different batch automation systems… even
within the same university.

• Our finance group likes XML and Tables.
• Though it uses Acquisitions, it can be used as a guide to create any

relational view.

Import invoices into finance system

• I will only provide logic, API URLs, and pseudo-code here.
• First we needed to clean up our Alma data
• Each vendor needed a Financial System Code that would correspond

to what is in the university system.
• Plus we also needed to provide each Fund Code with a code that

would match the university system.
• So Vendors and Funds have two identifiers: the Alma Identifier, and

the University Identifier.

Step 1: Get the fund codes
• Our finance development group likes working with tables (and XML) so

the first step was to populate a temporary (or refreshable) fund code
mapping table using the Funds API.

• This will map the Alma fund code to our Finance System Fund Code.

• Note that we can only retrieve up to 100 codes at a time.

• A loop was created to grab 1-100, then 101-200, etc.
offset = 0;
do {

myData = GET “https://api-na.hosted.exlibrisgroup.com/almaws/v1/acq/funds
?apikey={{apikey}}&view=full&limit=100&offset={{offset}}”;

addToTempFundable(myData);
offset += 100;

} while (numOfFundsReturned == 100);

alma_code external_id

ESci 12345-744

ERel 12345-732

EHum 12245-743

temp_fund_table

Step 2: Get the ACTIVE invoices

• Now we populate a temporary Invoice table using the Invoice API.
• Again note that each call will only return up to 100 invoices.

offset = 0;
do {

myData = GET “https://api-na.hosted.exlibrisgroup.com/almaws/v1/acq/invoices/
?apikey={{apikey}}&base_status=ACTIVE&limit=100&view=brief&
offset={{offset}}”;

addToTempInvoiceTable(myData);
offset += 100;

} while (numOfInvoicesReturned == 100);

There could be more than one
fund distribution per line item

There could be more than one
line item per invoice

invoice_id alma_vendor_code line_id fund_code

88108560000521 WTCOX 88108730000521 EHum

88108560000521 WTCOX 88108730000521 ERel

88108750000521 BAKER 88108990000521 EHum

temp_line_table

invoice_id alma_vendor_code amt…

88108750000521 WTCOX …

88108750000521 BAKER … temp_invoice_table

Vendors

• Using the Invoice table, we can reference the list of vendors we need to
get data on.

• We need to make 1 call for each vendor, but not necessarily each invoice.
• We could have 3 invoices for one vendor so we want to group first.

vendorList = removeDuplicates(getAllInvoiceVendors()); // only need to access each vendor once
foreach (vendorList as vendor) {

vendorData = GET “https://api-na.hosted.exlibrisgroup.com/almaws/v1/
acq/vendors/{{vendor.alma_vendor_code}}?apikey={{apikey}}”;

addToTempVendorTable(vendorData);
}

alma_vendor_code financial_sys_code payment_addr …

WTCOX 101098392 123 Library Lane …

BAKER 101098689 221 Baker St. …

temp_vendor_table

Combine all the ingredients

• Take your fund codes, vendor codes, invoices, line items, and mix it
all together.

• Load what you need into your finance system.
• Stick a fork in it—it’s done!

