
Making APIs work for you:
Creating integrations to
enhance user services

Chad Kluck, Web Developer
St. Thomas Libraries, User and Digital Services

UMWUG: October 17, 2018

clkluck@stthomas.edu
github.com/USTlibraries
github.com/chadkluck

Presentation audio w/ slides: https://youtu.be/eg2VVG2qCvo

Welcome

What’s Your
Experience?

• How many have used an
API?

• How many have created an
Ex Libris API key for
integration with another
system?

• How many have at least
looked at the API
documentation?

• By the end of today you’ll
have done, or be able to
do, all three.

“Students Posing with Computer 1961”

Photo from University of St. Thomas Libraries Archives
http://cdm16120.contentdm.oclc.org/cdm/ref/collection/arch-photo/id/903

Agenda

• Get Familiar: What is an API?

• Ex Libris API Center: The Tour

• Postman: The Ease of Playing with APIs

• Security: (aka Officer Buzz Kill)

• A Framework & Other Goodies from GitHub

Get Familiar: What is an API?

What is an API?

• Application Program Interface

• To put it simply: it’s data that one application can request from another

• One application makes a REQUEST to a server

• Then the server gives back a RESPONSE

Your
PHP/JavaScript

Application/Script

I need data on user_id 1005783

{name: Charlie Brown…}

Enhance User
Services

• You no longer need to rely on
vendors to deliver a custom user
interface or widget

• RSS feeds are still strong, but limited

• Bring the data to where your patrons
are in portals, on your website, and
even new and bold places like voice
or chat assistants

• Streamline the book request process
• In house?
• Consortium?

• Interlibrary Loan?

Just let an app figure it out through a
decision tree!

I read, therefore I code!

Can you read this and visualize what it does?

<h1>Hello World!</h1>
<p>This is my page!</p>
<img src=“images/underconstruction.gif” alt=”A
highly animated and annoying GIF”>
<p>About me</p>

How many, the first time you saw HTML, said: “WTH? Maybe, if I stare at it
long enough, just maybe I can make out what it is”?

Data Response Example (JSON)

["hello world"]

It is a single text string:

hello world

In fact, try it now in any browser by going to:

https://api.chadkluck.net/umwug

Data Response Example #2 (JSON)

What is this?

["banana", "apples", "oranges"]

It’s a list:

Item 1: “banana”
Item 2: “apples”
Item 3: “oranges”

Or, if you think in arrays:

[0]: “banana”
[1]: “apples”
[2]: “oranges”

JSON: JavaScript Object Notation (but it can be used with PHP, Python, ASP…)

BAO

Data Response Example #2 (JSON)

What is this?

["banana", "apples", "oranges"]

BAO

A quick note: Examples and links from a slide:
https://api.chadkluck.net/umwug?code={{3LetterCode}}

The 3 letter code is shown here

https://api.chadkluck.net/umwug?code=

Data Response Example #3 (JSON)

What about this?
[{

"name": "Charlie Brown",

"id": "1005783",

"fines": 38.93

},

{

"name": "Linus van Pelt",

"id": "1004378",

"fines": 0,

"loans": [{"title": "Bible (KJV)",

"due": "20181226"}]

}]

It’s a multi-level array!

[0][name]: "Charlie Brown"

[0][id]: "1005783"

[0][fines]: 38.93

[1][name]: "Linus van Pelt"

[1][id]: "1004378"

[1][fines]: 0

[1][loans][0][title]: "Bible (KJV)"

[1][loans][0][due]: "Dec 26, 2018"

LVPhttps://api.chadkluck.net/umwug?code=

Wait, so you REQUEST a RESPONSE through a
URL?

• Yep! No database connections

• It’s the same as you would a web page, by using a URL

• Just as https://example.com/mypage might get you:
<html><head><title>Hello World!</title></head>
<body><h1>Hello World</h1></body></html>

• Requesting https://api.chadkluck.net/umwug?code=CPE will get you:
{"gamechoices":["Falken's Maze","Black Jack","Gin
Rummy","Hearts","Bridge","Checkers","Chess","Poker","Fighter
Combat","Guerrilla Engagement","Desert Warfare","Air-To-Ground
Actions","Theaterwide Tactical Warfare","Theaterwide Biotoxic
and Chemical Warfare","Global Thermonuclear War"],
"hiddengames":["Tic-Tac-Toe"]}

CPEhttps://api.chadkluck.net/umwug?code=

Okay, but what can I do with it?

Linus van Pelt

Your Loans
Bible (KJV) is due Dec 26
Public Speaking is due Dec 26

[{

"name": "Linus van Pelt",

"id": "1004378",

"fines": 0,

"loans": [{"title": "Bible (KJV)",

"due": "20181226"},

{"title": "Public Speaking",

"due": "20181226"}]

}]

<div>Linus van Pelt<div>

<h2>Your Loans</h2>

Bible (KJV) is due Dec 26

Public Speaking is due Dec 26

LVP

Real Life Example:
University Portal
(One St. Thomas)

• When students and staff
log in they see their
library activity

• Loaned items
• Hold requests
• Fees and fines

https://one.stthomas.edu

Chad, it must have taken you weeks to code that!

• Um, no. I didn’t code that (though I could have!)

• I just went to our IT people and said: “I have this great idea for the new
portal!”

• They said, “Yeah? What?”

• I said, “What if we let users know when their book request was available,
see what they had checked out and if they had any fines!”

• They bowed down to me and exclaimed, “That’s a brilliant idea!”

• I don’t even know, or care, what language they used

• I simply copied API code a little bird gave me and handed it over to IT

But, I did need to interpret the data!

[{

"name": "Charlie Brown",

"id": "1005783",

"fines": 38.93

},

{

"name": "Linus van Pelt",

"id": "1004378",

"fines": 0,

"loans": [{"title": "Bible (KJV)",

"due": "20181226"}]

}]

• I told them in what fields to find the
user data

• I told them what fields from the
book request to display

• And that little bird who told me?

(Just Kidding)
But seriously, I got it from the….

Woodstock by Charles M. Schulz, Peanuts
United Feature Syndicate Inc.

Ex Libris API Center: The Tour

Get started

• Create your account

• Generate an API key

• Play

“Students in Computer Lab 1988”

Photo from University of St. Thomas Libraries Archives
http://cdm16120.contentdm.oclc.org/cdm/ref/collection/arch-photo/id/796

Set yourself up (if you have authorization)

• Who holds the keys? Take them out for coffee

• Get yourself an account

• Go to the ExLibris Developer’s Network
• https://developers.exlibrisgroup.com

• Go to Applications

DEV

Generate a key

• Recommend one for each
application

• …that way you have an idea of
what’s “out there”

• …and you can revoke access if you
need to

• For example, when we went from
development to production

• To generate a key click on Add
Application

Adding an Application

Next Step: Add APIs

Note:

• You don’t typically need a whole bunch of APIs

• For example our portal only needed “Users” as loans and fines are included

• Check documentation

• One weird thing, you’ve got to go back to the Application list and choose Edit.
That will allow you to change “Plan” (Read-only, production, etc)

Play

Formulate
your request

• From the Explore screen:
1. Choose the API (Users)
2. Choose the Resource (Loans)
3. Method (GET) – (typical)
4. Enter a user_id (your own)
5. Add a parameter: format = json
6. Choose an API Key
7. Choose authentication (your app)
8. Execute!

Eureka!

• You’ve got data!

• But now what?

Query tab!

It’s a URL!
(Don’t forget to append “&apikey=xxxx”)

But wait!
There’s more!

Python!

PHP!

cURL!

JavaScript!

JavaScript!
You must never use JavaScript with Ex
Libris APIs! I’ll get to that at the end. But
promise me, for all that is good in this
world, do not USE JavaScript for this!
JavaScript is fine, but NOT for accessing
Ex Libris APIs. I access other APIs via
JavaScript, nothing wrong with it!

Documentation

• You need to know what fields are available and how to make requests

• Ex Libris has extensive documentation on the Developers site

• For example, Users:
• https://developers.exlibrisgroup.com/alma/apis/users

DOC

Postman: The Ease of Playing with
APIs

Postman

• A browser, but for APIs

• Remember that URL we used earlier?
• https://api.chadkluck.net/umwug

• We’ll create a new request and enter that URL

• But first we need to install the application

Get Postman

• Download from site https://www.getpostman.com and install

• Create a new GET request for https://api.chadkluck.net/umwug
• Hit “Send”

Beautiful, isn’t it?

Add a query parameter (key + value pair)

1. Add “code” as a key and enter “CPE” for the value

2. Hit “Send”

You’ll notice that the parameters are added to the query string in real-time. You can
paste in a full URL with query string and it will parse out the parameters for you.

Would you like to play a game?

• Go ahead and try changing the
value for “code” and submit:

• BAO
• LVP
• CBL

Careful when playing around!

• Doing a GET: You’re safe

• DELETE, POST, PUT? Know what you’re doing!

• This is where provisioning the keys is important

Let’s try another request

• Remember our university portal example?
• Loans
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/loans?
user_id_type=all_unique&limit=10&offset=0&order_by=due_date&format=json&directio
n=ASC&apikey={{apikey}}

• Holds
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/requests?
request_type=HOLD&user_id_type=all_unique&limit=10&offset=0&status=active&format
=json&apikey={{apikey}}

• Fines
https://api-na.hosted.exlibrisgroup.com/almaws/v1/users/{{user_id}}/fees?
user_id_type=all_unique&status=ACTIVE&format=json&apikey={{apikey}}

• Replace {{user_id}} and {{apikey}} with your own

• Or don’t, because…

LHF

Environment variables!

• You can add frequently used values for testing, such as mm_id, user_id, etc.

• Access them by placing the variable name in between {{ }}

• https://api.chadkluck.net/umwug?code={{code}}

Environment Variables: Manage/Add

Use {{variable}} for the value

• Switch between environments to change the value of the variable

• Multiple test users, loan ids, book ids, etc

Environment Variables: Switch Between Values

Environment Variables: View Current Values

Postman is fully featured and free!

• Save multiple environment variable sets

• Organize your requests in folders

• Create a free account and access your work from the cloud across multiple
machines

• Oh, and one more thing…

Code snipits!

Python!

PHP!

cURL!

JavaScript!

There are exceptions, right?

Or…
Maybe?

Security: (aka Officer Buzz Kill)

Security Checklist

• Are we exposing sensitive
data in the API request?

• Personal information

• IDs that can be traversed in
reverse

• Secrets like an API key or
access tokens

• Does it have the potential to
return any of the above?

• If you answer “yes” to any
of these then you need to
implement the request
server-side

• All Ex Libris APIs will
have an answer of “Yes”

• Why? API Key

“Computer Dance 1965”
St. Thomas freshmen were matched to dates based on answers to a questionnaire

Photo from University of St. Thomas Libraries Archives
http://cdm16120.contentdm.oclc.org/cdm/ref/collection/arch-photo/id/903

Applying the Security Checklist: Example #1

• Let’s look at that last example again:
• https://api.chadkluck.net/umwug?code=CPE

• Does the request:
• Contain any personal info?
• Reveal IDs that can be traversed in reverse?
• Contain secrets like an API key?
• Return any of the above?

No, No, No, and No! APPROVED!

Applying the Security Checklist: Example #2

• Let’s look at another example:
• https://api.chadkluck.net/umwug?code=CBL

• Does the request:
• Contain any personal info?
• Reveal IDs that can be traversed in reverse?
• Contain secrets like an API key?
• Return any of the above?

No, No, No, but YES! DENIED!

Applying the Security Checklist: Example #3

• Loans
https://api-blahblah.com/almaws/v1/users/1004378/loans?
user_id_type=all_unique&limit=10&offset=0&order_by=
due_date&apikey=trfKkutTj3ljsXfZyEHB4D

• Does the request:
• Contain any personal info?
• Reveal IDs that can be traversed in reverse?
• Contain secrets like an API key?
• Return any of the above?

YES, No, Yes, and YES!

DENIED!

Applying the Security Checklist: Example #4

• Bibs
https://api-blahblah.com/almaws/v1/bibs/235487

• Does the request:
• Contain any personal info?
• Reveal IDs that can be traversed in reverse?
• Contain secrets like an API key?
• Return any of the above?

No, ___ No, and No

Applying the Security Checklist: Example #4

• Bibs
https://api-blahblah.com/almaws/v1/bibs/235487

• Does the request:
• Contain any personal info?
• Reveal IDs that can be traversed in reverse?
• Contain secrets like an API key?
• Return any of the above?

No, ___ No, but YES!

DENIED!

YES,

/loans

API Best Practices

• Never reveal secrets

• Never place secrets in the client’s hands (JavaScript in browser, URLs,
POST requests, compiled code in a mobile app)

• Definitely never hard code them!
• Two words: View Source

• Anything in the client’s hands is able to be reversed engineered
• A hard lesson to learn, many app devs still do it and it comes back to bite them!

• Revealing a key to someone makes them look at it and think, “Huh, I
wonder what else this opens.”

We’ve all had that one door
in the library we’re curious
about.

For weeks you glanced at it
as you passed.

Then, one day you wondered
if the key they entrusted to
you opens it.

You slipped the key in.
Perhaps you tried more than
one, disappointed on each
failed attempt, but still eager
to try again.

The knob might have turned
hard, you jiggled the key
because you were
determined to make it work.

Finally it worked! It opened!

You looked inside with
satisfaction.

You thought, “Am I really
supposed to have a key for
this?”

Then you quietly closed the
door and promised yourself
never to tell anyone.

But, sometimes, maybe even
last week, as you walked
past, you checked to make
sure no one was looking
before you tested to see if
the key still worked.

It did!

“Yes! No one has caught me
yet!”

Someday, eventually, you’ll
have the urge to brag in front
of your peers. Then at some
conference you’ll mention the
thrill you felt when you had
once been bored and
curious.

And therefore you know what
it’s like to be a hacker.

The problem with the Ex Libris API

• It’s not really a problem

• The limitations it imposes actually increases its flexibility and usefulness

• It is API key based and therefore meant to be used server to server

• It is a key that opens many doors, even ones you don’t consider

• An API key, even one provisioned for just BIBs, allows someone to poke
around

• It is up to you to develop a (secure) public interface

When to use client-side API calls

• Public feeds (blogs, event calendars, new book lists)

• At St. Thomas Libraries we use JavaScript API calls for a lot of public
content

• However we typically TRANSFORM the data before passing it on to the client-side
• We host a variety of intermediary scripts (written in PHP)
• We also restrict which websites can request the data through the embedded scripts
• If the requestor for the data is not from a *.stthomas.edu webpage or a pre-approved

domain, we don’t honor the API request.

Creating an intermediary

https://www.stthomas.edu/libraries <script>
var display = function (apiRequest) {

/* some code that makes the request
and then formats it in HTML for
display on page */

}
// call the display func with API url
display(“https://lib-

api.stthomas.edu/courses?list=all”);
</script>

Displaying a list of courses we have in Course Reserves is pretty safe, right?
But we can’t just put GET / almaws/ v1/ courses?apikey=xxxx out there in JavaScript

We’ll host an intermediary script on our application
server

• https://lib-api.stthomas.edu/courses?list=all
• /courses/index.php is a server-side script that holds the API key and

only returns pre-defined (non-sensitive) data fields suitable for public
consumption.

• The server-side script also checks to make sure the request was made from a
St. Thomas website (don’t confuse this with IP Address checking!)

• Why check for a *.stthomas.edu address? So that our server doesn’t respond to
blanket requests that didn’t originate from a web page hosted by us.

• Responding to illegitmate requests (even for public information) uses bandwidth and
server processing time.

The Intermediary

https://www.stthomas.edu/libraries

https://lib-api.stthomas.edu/courses

?list=all

// API Script Pseudo Code

$params = getParams();
$url = “/ almaws/ v1/ courses?$params&apikey=$apikey”;
callExLibrisAPI(url);
generateResponse();

It has tunnel vision, it doesn’t know about the other API requests that are possible. Doesn’t even think
about poking around the other APIs it has access to. It is a very trustworthy staff member.

The “backend” call

https://www.stthomas.edu/libraries

api-na.exlibris

https://lib-api.stthomas.edu/courses

/ almaws/ v1/ courses?apikey=xxxx

Course 1
Instructor, name, data
Course 2
Instructor, name, data
Course 3
Instructor, name, data

The intermediary passes back “clean” data

https://www.stthomas.edu/libraries

https://lib-api.stthomas.edu/courses

// API Script Pseudo Code

$params = getParams();
$url = “/ almaws/ v1/ courses?$params&apikey=$apikey”;
callExLibrisAPI(url);
generateResponse();

[{"title": "Geology 101",

"code": "GEOG101"},

{"title": "Biology 203",

"code": "BIOL203"}

]

Live Demo

• https://libraries.aws.stthomas.edu/api/exlibris-api-example/

Wow. That’s a lot of coding. Sigh.

• “Chad, you made me sit through this presentation thinking I would walk
away with something I could actually use.”

• Yes, but I have some good news…

A Framework
& Other Goodies from GitHub

But you’ll need a place to host your code

• If you can’t have your own IT group provision a server, there are other
options (as long as you are allowed to host your code elsewhere)

• Amazon Web Services (AWS)

• Microsoft

• Google sheets

• Be careful, you don’t want a host that is prone to being compromised

• And you don’t want to store sensitive data where you shouldn’t

• Be sure to vet your hosting provider

Server Side

• Anywhere you can run server side scripts to create a data set and then utilize
a public API from that

• WordPress, Drupal

• Be careful! API requests take time and can delay loading of a web page
• That’s why we use JavaScript where possible
• Page loads and when API calls are done the JavaScript updates the page

GitHub

• There’s a lot out there

• But these will get you coding for now:
• github.com/USTLibraries
• github.com/chadkluck

GIT

Framework

• Developed to quickly deploy APIs and microsites
• All you need to do is:

• Set up a few lines in the custom config file (CORS request)
• And plop your code into the generateResponse() function consisting of:

• An API request to Ex Libris
• Running through/looping through the data
• Generating an array of data suitable to return

• https://github.com/chadkluck/php-project-framework

• Here’s something to get you started:
• https://github.com/ustlibraries/exlibris-api-example

JavaScript Template

• Already has code to make API calls

• Place your code in the execute() function

• You’re ready to roll

• https://github.com/chadkluck/js-template

• Example: 8 Ball (heavy scripting)
• https://diversion.chadkluck.net/8ball
• https://github.com/chadkluck/8ball-api (the api service)
• https://github.com/chadkluck/8ball-js (the JavaScript client)

A final piece of code

The code for api.chadkluck.net/umwug:

• https://github.com/ustlibraries/umwug-2018

What next?

• Even if you can’t set up a server environment, get familiar and play

• Play with Postman, Ex Libris APIs, your own APIs

• Understand what is available, and what you can do
• Start small, remember I just handed 3 API requests over to our university developers

• This time next year: Proposition for a place to host your APIs
• I gave you everything you need to get started

Thank You!
Questions?

clkluck@stthomas.edu
github.com/USTlibraries
github.com/chadkluck

Bonus API Calls: Step 1
• Try these out in postman, but here’s a sequence to get you on your way to a

book request service (well, once the user is authenticated—there is that)

• Each of the following leads to the next

• First a user performs a search query:

https://api-
na.hosted.exlibrisgroup.com/primo/v1/pnxs?q={{query}}
&lang=eng&offset=1&limit=10&view=full&vid=STTHOMAS&sc
ope=stthomas&apikey={{apikey}}

BNS

Bonus API Calls: Step 2

• When a user selects an item we get the BIB:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/?view=full
&expand=p_avail,e_avail,d_avail&nz_mms_id={{nz_mms_id}}
&format={{format}}&apikey={{apikey}}

• Holding Link:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/
{{mms_id}}/holdings?format={{format}}&apikey={{apikey}}

• Get PID:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/
{{mms_id}}/holdings/{{holding_id}}/items/?
format={{format}}&apikey={{apikey}}

BNS

Bonus API Calls: Step 3

• We make the request for the user:
https://api-na.hosted.exlibrisgroup.com/almaws/v1/bibs/
{{mms_id}}/holdings/{{holding_id}}/items/{{item_pid}}/requests?
user_id={{user_id}}&format={{format}}&apikey={{apikey}}

BNS

Video of Presentation Slides with Audio

• I recorded the presentation slides along with audio:
https://youtu.be/eg2VVG2qCvo

